Disciplines
- Biologie cellulaire
- Génétique médicale
Champ d'expertise
- COVID-19
- COVID19
Présence sur le Web
Expertise de recherche
Les identités cellulaires peuvent être considérées comme un paysage d’états attracteurs. Dans ce modèle, l’espace total de tous les états moléculaires possibles est rythmé par un petit nombre d’états stables (« états attracteurs »), définis par des réseaux de régulation génétique auto-renforçants. Comme la probabilité qu’une cellule à un moment donné existe dans un état moléculaire donné est proportionnelle à la stabilité de cet état, nous pouvons visualiser l’espace moléculaire comme un paysage de probabilité similaire au concept des paysages de Waddington. Comprendre les réseaux associés à ces états attracteurs et comment ils changent au cours des transitions identitaires permettrait de manipuler les cellules dans des états avantageux, ou loin des nuisibles. L’objectif principal de mon programme de recherche est de questionner plusieurs questions liées à ces concepts: Y a-t-il un seul chemin entre deux états ou y en a-t-il plusieurs? Comment un état de départ donné influence-t-il la probabilité de transition et le chemin? Existe-t-il des états attracteurs intermédiaires communs dans plusieurs transitions?
La reprogrammation cellulaire / différenciation directe nécessite une perte des caractéristiques différenciées existantes, suivie de l’activation d’un nouveau programme permettant d’établir la nouvelle identité cellulaire fonctionnelle. Ce processus contient toutes les étapes mécaniques nécessaires pour comprendre la détermination de l’identité et représente donc un modèle idéal pour comprendre la base moléculaire de l’identité cellulaire. Nous utilisons une combinaison de techniques analytiques monocellulaires et de circuits génétiques synthétiques pour manipuler les déterminants moléculaires de l’identité cellulaire et mesurer les effets de ces perturbations. Les connaissances acquises grâce à ces études amélioreront notre capacité à produire des types de cellules thérapeutiquement pertinents, à mieux comprendre comment l’identité cellulaire peut être perturbée lors de l’oncogenèse et à identifier de nouvelles cibles pour une intervention thérapeutique.
Affiliations de recherche UdeM
Pour en savoir plus
Publications
- Knapp, D.J.H.F., Michaels, Y.S., Jamilly, M., Ferry, Q.R.V., Barbosa, H., Milne, T.A., and Fulga, T.A. (2019). Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nature Communications 10, 1490.
- Knapp, D.J.H.F., Hammond, C.A., Wang, F., Aghaeepour, N., Miller, P.H., Beer, P.A., Pellacani, D., VanInsberghe, M., Hansen, C., Bendall, S.C., et al. (2019). A topological view of human CD34+ cell state trajectories from integrated single-cell output and proteomic data. Blood 133, 927–939.
- Knapp, D.J.H.F., Hammond, C.A., Hui, T., van Loenhout, M.T.J., Wang, F., Aghaeepour, N., Miller, P.H., Moksa, M., Rabu, G.M., Beer, P.A., et al. (2018). Single-cell analysis identifies a CD33+ subset of human cord blood cells with high regenerative potential. Nat. Cell Biol. 20, 710–720.
- Knapp, D.J.H.F., Hammond, C.A., Aghaeepour, N., Miller, P.H., Pellacani, D., Beer, P.A., Sachs, K., Qiao, W., Wang, W., Humphries, R.K., et al. (2017). Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood 129, 307–318.
- Knapp, D.J.H.F., Kannan, N., Pellacani, D., and Eaves, C.J. (2017). Mass Cytometric Analysis Reveals Viable Activated Caspase-3(+) Luminal Progenitors in the Normal Adult Human Mammary Gland. Cell Rep 21, 1116–1126.